The Case For Heterogeneous HTAP

نویسندگان

  • Raja Appuswamy
  • Manos Karpathiotakis
  • Danica Porobic
  • Anastasia Ailamaki
چکیده

Modern database engines balance the demanding requirements of mixed, hybrid transactional and analytical processing (HTAP) workloads by relying on i) global shared memory, ii) system-wide cache coherence, and iii) massive parallelism. Thus, database engines are typically deployed on multi-socket multi-cores, which have been the only platform to support all three aspects. Two recent trends, however, indicate that these hardware assumptions will be invalidated in the near future. First, hardware vendors have started exploring alternate non-cache-coherent shared-memory multi-core designs due to escalating complexity in maintaining coherence across hundreds of cores. Second, as GPGPUs overcome programmability, performance, and interfacing limitations, they are being increasingly adopted by emerging servers to expose heterogeneous parallelism. It is thus necessary to revisit database engine design because current engines can neither deal with the lack of cache coherence nor exploit heterogeneous parallelism. In this paper, we make the case for Heterogeneous-HTAP (HTAP), a new architecture explicitly targeted at emerging hardware. HTAP engines store data in shared memory to maximize data freshness, pair workloads with ideal processor types to exploit heterogeneity, and use message passing with explicit processor cache management to circumvent the lack of cache coherence. Using Caldera, a prototype HTAP engine, we show that the HTAP architecture can be realized in practice and can offer performance competitive with specialized OLTP and OLAP engines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a quantitative trait locus for high-temperature adult-plant resistance against Puccinia striiformis f. sp. hordei in 'Bancroft' barley.

Sustainable control of plant diseases can be achieved by developing cultivars with durable resistance. 'Bancroft' barley has durable high-temperature, adult-plant (HTAP) resistance to stripe rust caused by Puccinia striiformis f. sp. hordei. The objectives of this study were to determine the inheritance of the HTAP resistance in Bancroft, develop molecular markers for the HTAP resistance using ...

متن کامل

Improved Transgenic Mouse Model for Studying HLA Class I Antigen Presentation

HLA class I (HLA-I) transgenic mice have proven to be useful models for studying human MHC-related immune responses over the last two decades. However, differences in the processing and presentation machinery between humans and mice may have profound effects on HLA-I restricted antigen presentation. In this study, we generated a novel human TAP-LMP (hTAP-LMP) gene cluster transgenic mouse model...

متن کامل

Hierarchical Tree Alternative Path (HTAP) algorithm for congestion control in wireless sensor networks

Recent advances in wireless sensor networks (WSNs) are leading to applications with increased traffic demands. Research is evolving from applications where performance is not considered as a crucial factor, to applications where performance is a critical factor. There are many cases in the fields of automation, health monitoring, and disaster response that demand wireless sensor networks where ...

متن کامل

Understanding Molecular Mechanisms of Durable and Non-durable Resistance to Stripe Rust in Wheat Using a Transcriptomics Approach

Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici, continues to cause severe damage worldwide. Durable resistance is necessary for sustainable control of the disease. High-temperature adult-plant (HTAP) resistance, which expresses when the weather becomes warm and plants grow older, has been demonstrated to be durable. We conducted numerous studies to understand the molecular ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017